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Abstract—A diastereoselective synthesis of �-1-formyl-2,3,4,6-tetra-O-benzyl-D-glucopyranoside in four steps, using an umpolung
Seebach reaction is described. © 2002 Elsevier Science Ltd. All rights reserved.

In recent years, C-glycosides have been the subject of
considerable interest in carbohydrate chemistry, as well
as in organic synthesis. Several natural products con-
tain C-glycosidic linkages.1–3 Moreover, C-glycosides
are a readily accessible source of chiral synthons pos-
sessing more carbons than O-glycosides.4 Because of
the stability of the carbon�carbon bond involved, they
are convenient and stable analogues of hetero-glyco-
sides for enzymatic and metabolic studies.5,6 Thus,
gaining access to various C-glycosides as building
blocks in a diastereoselective fashion is of major
interest.

Towards the goal, C-glycosylaldehydes constitute
attractive templates since they can be substrates in

various reactions like alkylation, oxidation, reduction
or Wittig-type condensations. However, their synthesis
is often arduous or affords � and � anomeric mixture,7–

10 which is a limitation in their utilisation.

In order to develop new diastereoselective syntheses of
C-glycosyl-�-aminoacids, we needed formyl-2,3,4,6-
tetra-O-benzyl-D-glucopyranoside as glycosylacceptor.
However, the synthesis of this glycosylaldehyde,
described by Dondoni et al.,8 is not easy and results in
an anomeric mixture. For this reason, we developed a
highly diastereoselective synthesis of 1-formyl-2,3,4,6-
tetra-O-benzyl-�-D-glucopyranoside 5 in four steps
from 2,3,4,6-tetra-O-benzyl-D-glucopyranose 1 with a
good overall yield. Thus, commercially available 1 was

Scheme 1. Reagents and conditions : (i) DMSO, Ac2O, rt, 12 h, 99%; (ii) (MeS)2CH2 (4 equiv.), n-butyllithium (4 equiv.), THF,
−60°C, 5 h, 74%; (iii) BF3·Et2O (3 equiv.), Et3SiH (3 equiv.), CH2Cl2, −78°C, 5 min, then rt, 3 h; (iv) MeI (10 equiv.), CaCO3 (3
equiv.), CH3CN/H2O (5/1), rt, 72 h.
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converted into 1-bis(methylthio)methyl-2,3,4,6-tetra-O-
benzyl-�-D-glucopyranose 3 according to the method
described by Fukase et al.11 The � pure glycosylalde-
hyde 5 was obtained as the only � anomer after two
additional steps. The synthetic pathway is outlined in
Scheme 1.

2,3,4,6-Tetra-O-benzyl-D-glucono-1,5-lactone 2 was
obtained by oxidation of 1.12 After completion, addi-
tion of water and extraction with ethyl acetate was
sufficient to obtain 2 in 99% yield without any further
purification. The second step, described by Fukase,11

was the umpolung Seebach reaction of 2 with bis-
(methylthio)methyl carbanion. Fukase obtained 1-C-
[bis(methylthio)methyl]-�-D-glucopyranose 3 in 80%
yield by action of n-butyllithium on the corresponding
bis(methylthio)methane using two equivalents of bis-
(methylthio)methane and of n-butyllithium.11 However,
in our hands, these conditions afforded 3 in only 40%
yield. Four equivalents of bis(methylthio)methane and
n-butyllithium were needed to obtain 3 in 74% yield.
The anomeric hydroxyl group of 3 was then stereospe-
cifically reduced by triethylsilane13 in the presence of
boron trifluoride diethyl etherate to afford the single �
anomer, �-1-bis(methylthio)methyl-tetra-O-benzyl-D-
glucopyranoside 4, in an excellent yield (99%). The �
configuration was assigned by 1H NMR spectroscopy
by measuring a 8.9 Hz coupling constant between H1

and H2.14 This value is representative of an axial/axial
coupling, only possible with a � configuration and a
chair C1 conformation (Fig. 1). Finally, dithiane alkyl-
ation and cleavage with methyl iodide and calcium
carbonate15 afforded the glycosylaldehyde 516 whose
data were identical to the � anomer described by
Dondoni.8

It is noteworthy that compound 5 could be obtained in
the same global yield by purifying only at the last step.

The facile synthesis of the 1-formyl-2,3,4,6-tetra-O-benz-
yl-�-D-glucopyranoside 5 in pure � anomeric form is an

advance in C-glycosidic chemistry. We are now focus-
ing on the diastereoselective synthesis of C-glycosyl-
aminoacids using 5 as a building block.
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